tryptamine seizure potentiation ${ }^{17}$ were previously reported.
Yohimbine Toxicity Potentiation. Groups of ten male CD-1 mice (Charles Rivers, 20-30 g) were utilized. The test compound was prepared in distilled water with one drop of surfactant and administered at $0.2,0.6,2.0,6.0$, and $20.0 \mathrm{mg} / \mathrm{kg}$ po $(10 \mathrm{~mL} / \mathrm{kg})$. The control group received vehicle. Yohimbine hydrochloride was prepared in distilled water and administered at $22.3 \mathrm{mg} / \mathrm{kg}$, $\mathrm{sc}, 60 \mathrm{~min}$ after the test compound or vehicle. The groups of ten mice were then placed in cages with food and water. Mortality rate was assessed 18 h after dosing. The ED_{50} of potentiated yohimbine toxicity was calculated by probit analysis.

Oxotremorine Antagonism. Groups of six male CD-1 mice (Charles Rivers, 18-21 g) were utilized. Food and water were available ad libitum. The test compound was prepared in distilled water with one drop of surfactant and administered at $25 \mathrm{mg} / \mathrm{kg}$ ip ($10 \mathrm{~mL} / \mathrm{kg}$). At 30,60 , and 120 min after administration of the test compound, oxotremorine was administered at $2.5 \mathrm{mg} / \mathrm{kg}$ ip to each pretreatment group and the vehicle control group. The
(17) Tedeschi, D. H.; Tedeschi, R. E.; Fellows, E. J. J. Pharmacol. Exp. Ther. 1959, 126, 223.
animals were evaluated 15 min later for protection from central (tremors) and peripheral (salivation) effects of oxotremorine. ED_{50} values were calculated by probit analysis.

Muricide Prevention. Male Sprague-Dawley rats which consistently killed mice within 5 min of presentation were used. The rats were individually housed and a male albino mouse was placed in the home cage of the rats at 30,60 , and 120 min after the rats had been injected intraperitoneally with the test compound or saline. Failure to kill the mice within 5 min was considered as inhibition of murcidal behavior. Seven to eight muricidal rats were used at each dose of the test compound. Probit analysis was used to calculate ED_{50} for prevention of muricide.
Acknowledgment. The authors express their appreciation to Marc N. Agnew for spectral data and to Laurence R. Meyerson, Jeffrey C. Wilker, Mark Szewczak, James Kiley, Susan C. Nicolacopulos, and Dan Salomone for contributions to the biological evaluation. We also gratefully acknowledge June D. Baird-Strupczewski and Ann Van Dine for library research and Rose Marie Boysen for assistance in preparation of the manuscript.

(土)-4-Aryl-4,5-dihydro-3H-1,3-benzodiazepines. 2. Nuclear-Substituted Analogues of (\pm)-4,5-Dihydro-2,3-dimethyl-4-phenyl-3H-1,3-benzodiazepine and (\pm)-4,5-Dihydro-2-ethyl-3-methyl-4-phenyl-3H-1,3-benzodiazepine as Potential Antidepressant Agents ${ }^{1}$

Lawrence L. Martin,,${ }^{, \dagger}$ Linda L. Setescak, ${ }^{\dagger}$ Manfred Worm, ${ }^{\dagger, 8}$ Charles A. Crichlow, ${ }^{\dagger, \perp}$ Harry M. Geyer III, ${ }^{\ddagger}$ and Jeffrey C. Wilker ${ }^{\ddagger}$
Chemical Research Department and Department of Pharmacology, Hoechst-Roussel Pharmaceuticals Inc., Somerville, New Jersey 08876. Received October 9, 1981

Antidepressant-like activity, as evidenced by marked inhibition of tetrabenazine-induced ptosis, was previously reported for (\pm)-4,5-dihydro-4-phenyl-3 H-1,3-benzodiazepine derivatives. Since optimal antitetrabenazine activity was associated with (\pm)-4,5-dihydro-2,3-dimethyl-4-phenyl-3H-1,3-benzodiazepine ($9 \mathbf{k}$, HRP 543) and the 2 -ethyl-3-methyl analogue (10k), the synthesis and evaluation of nuclear-substituted derivatives of these two compounds was also investigated. The initial synthesis involved Friedel-Crafts acylation of substituted benzenes with 2-nitrophenylacetyl chloride to afford 1-aryl-2-(2-nitrophenyl)ethanones 2, which were converted in five steps to (\pm)- α-aryl- N-methyl-2-nitrobenzeneethanamines 7. Greater flexibility with respect to the introduction of nuclear substituents was achieved by conversion of 2 -nitrotoluene derivatives to 2 via acylation of intermediate β-(dimethylamino)-2-nitrostyrenes with various aroyl chlorides and hydrolysis. Reductive amination of 2 with methylamine and sodium cyanoborohydride afforded 7 directly and significantly reduced the number of synthetic steps. Reduction of $7 \mathrm{a}-\mathrm{j}$ to diamines $8 \mathrm{a}-\mathrm{j}$ and cyclization with appropriate ortho esters gave nuclear-substituted analogues of $9 \mathbf{k}$ and $10 k$. Marked antitetrabenazine activity was associated with many of these compounds. Significant enhancement of activity with respect to the unsubstituted analogues 9 k and 10 k was not observed, with the exception of 9 c which appeared to be slightly more potent than $9 \mathbf{k}$.

Antidepressant-like activity, as evidenced by marked inhibition of tetrabenazine-induced ptosis, was reported for (\pm)-4,5-dihydro-4-phenyl-3H-1,3-benzodiazepine derivatives in the first paper of this series. ${ }^{2}$ Since optimal activity was associated with (\pm)-4,5-dihydro-2,3-di-methyl-4-phenyl-3H-1,3-benzodiazepine (9k) and the 2 -ethyl-3-methyl analogue (10k) (Table I), the synthesis and evaluation of nuclear-substituted analogues of these compounds were also investigated and constitute the subject of this paper.
Chemistry. The synthesis of 1,3-benzodiazepines 9a-j and 10a-j is outlined in Scheme I, and their properties are

[^0]summarized in Table I. Properties of the various intermediates are summarized in Tables II and III. Ketones 2a,b,d,e were prepared by Friedel-Crafts synthesis with 2-nitrophenylacetyl chloride. Although of good utility, this synthesis was limited by the availability of nuclear-substituted 2-nitrophenylacetic acids and by the pattern of substitution possible for the acylated ring.

Garcia and Fryer 3 condensed 2-nitrotoluene (1la) with N, N-dimethylformamide diethyl acetal to give a β-(di-methylamino)-2-nitrostyrene, which was acylated with 2-fluorobenzoyl chloride to afford, after hydrolysis of the

[^1]

no.	R^{1}	X	Y	starting material	method	mp, ${ }^{\text {b }}{ }^{\circ} \mathrm{C}$	$\text { yield, }{ }^{c}$ $\%$	recrystn solvent ${ }^{d}$	formula	anal. ${ }^{e}$	pharmacol: f TBZ ED ${ }_{50}, \mathrm{mg} / \mathrm{kg}$ po
9 a	CH_{3}	H	$4-\mathrm{CH}_{3}$	8 a	L	285-288	45	B-D	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	C, H, N	5.2 (4.9-5.5)
9 b	CH_{3}	H	$4-\mathrm{OCH}_{3}$	8b	L	130-132	54	A	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$	C, H, N	19.8 (17.6-22.7)
9c	CH_{3}	H	$4-\mathrm{Cl}$	8 c	L	290-291	42	B-D	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	0.52 (0.48-0.57)
9d	CH_{3}	H	4-F	8d	L	253-255	55	B-D	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FN}_{2} \cdot \mathrm{HCl}$	C, H, N	3.6 (3.4-3.8)
9 e	CH_{3}	H	3,4-($\left.\mathrm{OCH}_{3}\right)_{2}$	8 e	L	222-226	41	B-D	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	C, H, N	5.0 (4.0-6.5)
9f	CH_{3}	H	$2-\mathrm{F}$	8 f	L	250-252	41	B-D	$\mathrm{C}_{17} \mathrm{H}_{17}^{22} \mathrm{FN}_{2}-\mathrm{HCl}$	C, H, N	7.6 (6.3-9.4)
9 g	CH_{3}	H	$2-\mathrm{Cl}$	8 g	L	245-250	67	D-E	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	$>5^{h}$
9 h	CH_{3}	Cl	H	8h	L	288-292	74	D-E	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	$\geqslant 20^{h}$
9 i	CH_{3}	H	$2-\mathrm{CH}_{3}$	8 i	L	239-248	86	D-E	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	C, H, N	5.5 (5.1-6.0)
9 j	CH_{3}	Cl	$2-\mathrm{F}$	8 j	L	285-290	69	G	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClFN}_{2} \cdot \mathrm{HCl}$	C, H, N	$>20^{h}$
9k	CH_{3}	H	H								2.1 (1.8-2.4)
10a	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$4-\mathrm{CH}_{3}$	8 a	L	267-268	44	B-D	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	C, H, N	6.1 ($5.0-7.8$)
10 b	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$4-\mathrm{OCH}_{3}$	8b	L	240-242	68	F	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	C, H, N	2.8 (2.5-3.1)
10 c	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$4-\mathrm{Cl}$	8 c	L	288-293	50	B-D	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	$<5^{h, i}$
10d	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	4-F	8 d	L	145-150	39	D-E	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FN}_{2} \cdot \mathrm{HCl}^{j}$	C, H	8.4 (5.0-11.6)
10 e	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$3,4-\left(\mathrm{OCH}_{3}\right)_{2}$	8 e	L	214-216	52	B-D	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	C, H, N	$8.2^{h}(7.1-9.6)$
10 f	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$2-\mathrm{F}$	8 f	L	242-248	63	B-D	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FN}_{2} \cdot \mathrm{HCl}$	C, H, N	7.0 (6.0-8.4)
10 g	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$2-\mathrm{Cl}$	8 g	L	243-244	56	B-D	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	4.1 (3.8-4.5)
10h	$\mathrm{C}_{2} \mathrm{H}_{5}$	Cl	${ }^{\mathrm{H}}$	8 Bh	L	265-269	84	D-E	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \cdot \mathrm{HCl}$	C, H, N	$\sim 20^{h}$
10 i	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$2-\mathrm{CH}_{3}$	8 i	L	213-218	81	D-E	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	C, H, N	3.1 (2.9-3.3)
${ }_{10}{ }^{\text {j }}$	$\mathrm{C}_{2} \mathrm{C}_{5}$	Cl H	$2-\mathrm{F}$	8 j	L	274-275	57	B-D	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClFN}_{2} \cdot \mathrm{HCl}$	C, H, N	$>20^{h}$
10k amit	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	H								$\begin{aligned} & 1.6(1.4-1.9) \\ & 1.9(1.4-2.5) \end{aligned}$

${ }^{a}$ All compounds exhibited IR and ${ }^{1} \mathrm{H}$ NMR spectra consistent with the assigned structures. ${ }^{b}$ Melting points are uncorrected. ${ }^{c}{ }^{c}$ Yield of analytically pure material unless
 water; $J=$ ethyl acetate. e Analytical results within $\pm 0.4 \%$ of theoretical values unless otherwise noted. Pharmacological properties were assessed in a battery of assays which
included prevention of tetrabenazine-induced ptosis in mice (TBZ), potentiation of the 5 -hydroxytryptophan-induced behavorial syndrome in pargyline-pretreated rats (5 HTP), included prevention of tetrabenazine-induced ptosis in mice (TBZ), potentiation of the 5 -hydroxytryptophan-induced behavorial syndrome in pargyline-pretreated rats (5 HTP),
inhibition of pentylenetetrazol lethality in mice (PTZ) and prevention of amphetamine aggregation toxicity in mice (AAT). For TBZ ED values were determined by linear

 noted. ${ }^{j}$ Monohydrate.

Table III. (\pm)- α-Arylbenzeneethanamine Derivatives ${ }^{a}$

Scheme I ${ }^{a}$

diazepines showing anxiolytic activity also inhibit pentylenetetrazol lethality (PTZ) as part of their overall profile, our compounds were also tested for protection from PTZ. The prevention of amphetamine aggregation toxicity (AAT) was used to access neuroleptic-like activity.

The results suggest that marked anti-TBZ activity is the most prominent pharmacological property of these nu-clear-substituted 1,3-benzodiazepines (Table I). Significant enhancement of anti-TBZ activity with respect to unsubstituted analogues $9 \mathbf{k}$ and 10 k was not observed, with the exception of 9 c which was slightly more active than 9 k . With respect to $5 \mathrm{HTP}, \mathrm{PTZ}$, and AAT, only slight activity at best was observed at the screening doses (Table I, footnote f). Compound $\mathbf{9 k}$ was selected for in-depth evaluation, and results of those studies are reported in the preceding paper. ${ }^{2}$

Experimental Section

The structures of all compounds are supported by their IR (Perkin-Elmer 457) and ${ }^{1} \mathrm{H}$ NMR (JEOL C60HL; tetramethylsilane) spectra. Melting points were taken on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Elemental analyses were performed by Micro Tech Laboratories, Skokie, IL. Results are within $\pm 0.4 \%$ of theoretical values unless otherwise noted in the tables. Reactions with moisture-sensitive reagents were maintained under a dry nitrogen atmosphere. Solvents dried over molecular sieves were employed for reactions requiring anhydrous solvents.

1-(4-Methylphenyl)-2-(2-nitrophenyl)ethanone (2a). Method A. A stirred mixture of 2-nitrophenylacetic acid (1; 23.8 $\mathrm{g}, 0.13 \mathrm{~mol}$) and 1,2 -dichloroethane (50 mL) was treated dropwise at ambient temperature with thionyl chloride ($23.8 \mathrm{~g}, 0.2 \mathrm{~mol}$), followed by heating at $65-70^{\circ} \mathrm{C}$ for 0.75 h . To the cooled mixture was added a solution of toluene ($17.9 \mathrm{~g}, 0.195 \mathrm{~mol}$) and 1,2 -dichloroethane (50 mL). Aluminum chloride ($18.66 \mathrm{~g}, 0.14 \mathrm{~mol}$) was then added in portions, followed by heating at $42^{\circ} \mathrm{C}$ for 0.75 h. The mixture was poured onto ice and concentrated hydrochloric acid (50 mL) and extracted with dichloromethane. The organic phase was washed with 5% sodium hydroxide solution and water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to an oil, which crystallized. Recrystallization from 95% ethanol gave $21 \mathrm{~g}(64 \%)$ of $2 \mathrm{a}, \mathrm{mp}$ $67-70^{\circ} \mathrm{C}\left[l i t . .^{4} \mathrm{mp} 77-78^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]$. Properties of 2 a , and of $\mathbf{2 b},{ }^{4} \mathbf{d}, \mathbf{e}^{5}$ prepared in similar manner, are included in Table II.
Method B. A stirred mixture of $12 \mathrm{a}(56.0 \mathrm{~g}, 0.18 \mathrm{~mol})$, dioxane (150 mL), and water (50 mL) was refluxed overnight and concentrated, and the residue was partitioned between water and dichloromethane. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ organic phase was concentrated to an oil, which crystallized on trituration with 95% ethanol to afford 2a ($39.5 \mathrm{~g}, 86 \%$). Properties of 2 a , and of $\mathbf{2 c}, \mathbf{d}, \mathbf{f}^{3}-\mathbf{j}$ prepared in similar manner, are included in Table II.

1-(4-Methylphenyl)-2-(2-nitrophenyl)ethanone Oxime (3a). Method C. This compound was prepared from $2 \mathrm{a}(50 \mathrm{~g}, 0.2 \mathrm{~mol})$, hydroxylamine hydrochloride ($27.8 \mathrm{~g}, 0.4 \mathrm{~mol}$), sodium acetate ($36.1 \mathrm{~g}, 0.44 \mathrm{~mol}$), water (100 mL), and 95% ethanol (200 mL) to afford $3 \mathrm{a}(50.8 \mathrm{~g}, 94 \%)$ in a manner analogous to that previously described for 2 -(2-nitrophenyl)-1-phenylethanone oxime. ${ }^{2}$ Properties of 3 a , and of $3 \mathrm{~b}-\mathrm{h}$ prepared in similar manner, are included in Table II.

1-(4-Methylphenyl)-2-(2-nitrophenyl)ethanone Oxime Acetate (4a). Method D. This compound was prepared from $3 \mathrm{a}(42.3 \mathrm{~g}, 0.17 \mathrm{~mol})$, pyridine (100 mL), and acetic anhydride to afford $4 \mathrm{a}(50.8 \mathrm{~g}, 96 \%)$ in a manner analogous to that previously described for 2-(2-nitrophenyl)-1-phenylethanone oxime acetate. ${ }^{2}$ Properties of $4 \mathbf{a}$, and of $\mathbf{4 b , d , f}$ prepared in similar manner, are included in Table II.

1-(4-Chlorophenyl)-2-(2-nitropheny1)ethanone Oxime Acetate (4c). Method E. A stirred mixture of $3 \mathbf{c}(84 \mathrm{~g}, 0.29 \mathrm{~mol})$ and acetic anhydride ($44 \mathrm{~g}, 0.44 \mathrm{~mol}$) was heated for 0.5 h at 60 ${ }^{\circ} \mathrm{C}$. The cooled mixture was triturated with water and filtered to give $\mathbf{4 c}(91 \mathrm{~g}, 98 \%)$ as an isomeric mixture. Properties of $\mathbf{4 c}$,

[^2]and of $\mathbf{4 e}, \mathbf{g}, \mathrm{h}$ prepared in similar manner, are included in Table II.
(\pm)- α-(4-Methylphenyl)-2-nitrobenzeneethanamine $\mathbf{H y}$ drochloride (5a). Method F. This compound was prepared from $4 \mathrm{a}(48 \mathrm{~g}, 0.1 \mathrm{~mol})$ and tetrahydrofuran $(350 \mathrm{~mL})$ by treatment with 1.01 M borane in tetrahydrofuran (594 mL) to afford 5 a (26.0 $\mathrm{g}, 60 \%$) in a manner analogous to that previously described for (\pm)-2-nitro- α-phenylbenzeneethanamine. ${ }^{2}$ Properties of 5a, and of $\mathbf{5 b} \mathbf{- h}$ prepared in similar manner, are included in Table III.
(\pm)- N-Formyl- α-(4-methylphenyl)-2-nitrobenzeneethanamine (6a). Method G. This compound was prepared from 5a free base ($19.6 \mathrm{~g}, 0.076 \mathrm{~mol}$) and methyl formate $(230 \mathrm{~mL})$ to afford $6 \mathrm{a}(17.7 \mathrm{~g}, 82 \%$) in a manner analogous to that previously described for (\pm)- N-formyl-2-nitro- α-phenylbenzeneethanamine. ${ }^{2}$ Properties of $6 a$, and of $\mathbf{6 b - h}$ prepared in similar manner, are included in Table III.
(\pm)- \boldsymbol{N}-Methyl- α-(4-methylphenyl)-2-nitrobenzeneethanamine Hydrochloride (7a). Method H. This compound was prepared by treatment of $6 \mathrm{a}(17.0 \mathrm{~g}, 0.06 \mathrm{~mol})$ and tetrahydrofuran $(200 \mathrm{~mL})$ with 0.98 M borane in tetrahydrofuran (122 mL) to afford $7 \mathrm{a}(12.8 \mathrm{~g}, 70 \%$) in a manner analogous to that previously described for (\pm)- N-methyl- α-phenyl-2-nitrobenzeneethanamine. ${ }^{2}$ Properties of $\mathbf{7 a}$, and of $\mathbf{7 b} \mathbf{- h}$ prepared in similar manner, are included in Table III.
(\pm)- \boldsymbol{N}-Methyl- α-(2-methylphenyl)-2-nitrobenzeneethanamine Hydrochloride (7i). Method I. A cold ($-40^{\circ} \mathrm{C}$), stirred solution of $2 \mathrm{i}(10.2 \mathrm{~g}, 0.04 \mathrm{~mol})$ and toluene $(150 \mathrm{~mL})$ was treated with methylamine (40 mL). After 15 min , a solution of titanium tetrachloride ($2.4 \mathrm{~mL}, 0.02 \mathrm{~mol}$) and toluene (40 mL) was added dropwise. The reaction mixture was warmed over 0.5 h to ambient temperature and then heated for 5 h at $80^{\circ} \mathrm{C}$ (internal temperature). After stirring overnight at ambient temperature, the mixture was filtered, and the filtrate was concentrated to afford a red oil (10.7 g). A solution of the oil and anhydrous methanol $(150 \mathrm{~mL})$ was treated dropwise with ethereal hydrogen chloride to $\mathrm{pH} 3-5$ (red color discharged). A solution of sodium cyanoborohydride ($2.5 \mathrm{~g}, 0.04 \mathrm{~mol}$) and methanol (60 mL) was added, followed by stirring for 0.5 h (acidic pH maintained with ethereal hydrogen chloride). The mixture was concentrated, and the residue was treated with 5% sodium hydroxide and extracted with ether. The organic phase was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and treated with ethereal hydrogen chloride to afford $7 \mathrm{i}(11.1 \mathrm{~g}$, 91%). Properties of $\mathbf{7 i}$, and of $7 \mathbf{j}$ prepared in similar manner, are included in Table III.
(\pm)-2-A mino- N-methyl- α-(4-methylphenyl)benzeneethanamine Dihydrochloride (8a). Method J. A mixture of 7 a free base ($8.81 \mathrm{~g}, 0.0325 \mathrm{~mol}$), potassium hydroxide (1.8 g), 10% Pd / C catalyst $(0.5 \mathrm{~g})$, and absolute ethanol was hydrogenated on a Paar apparatus ($2 \mathrm{~h}, 50 \mathrm{psi}$, ambient temperature). Filtration, treatment of the filtrate with ethereal hydrogen chloride, and recrystallization afforded 8 a ($7.0 \mathrm{~g}, 68 \%$). Properties of 8 a , and of $\mathbf{8 b}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ prepared in similar manner, are included in Table III.
(\pm)-2-Amino- α-(2-chlorophenyl)- N-methylbenzeneethanamine Dihydrochloride ($8 \mathbf{g}$). Method K. This compound was prepared from 7 g free base ($20.8 \mathrm{~g}, 0.07 \mathrm{~mol}$), iron powder (39 $\mathrm{g}, 0.7 \mathrm{~g}$-atom, reduced electrolytic, Mallinckrodt), 95% ethanol $(300 \mathrm{~mL})$, water (75 mL) and concentrated hydrochloric acid (2 mL) to afford 8 g in a manner analogous to that previously de-
scribed for (\pm)-2-amino- N-methyl- α-phenylbenzeneethanamine. ${ }^{2}$ Properties of $\mathbf{8 g}$, and of $\mathbf{8 d}, \mathrm{h}-\mathrm{j}$ prepared in similar manner, are included in Table III.
(\pm)-4,5-Dihydro-2,3-dimethyl-4-(4-methylphenyl)-3H-1,3benzodiazepine Hydrochloride (9a). Method L. This compound was prepared from $8 \mathrm{a}(3.0 \mathrm{~g}, 0.001 \mathrm{~mol})$, triethyl orthoacetate ($3.42 \mathrm{~g}, 0.057 \mathrm{~mol}$), and acetic acid (3.3 mL) to afford 9 a in a manner analogous to that previously described for (\pm)-4,5-dihydro-2,3-dimethyl-4-phenyl-3H-1,3-benzodiazepine. ${ }^{2}$ Properties of $9 \mathbf{a}$, and of $9 \mathbf{b}-\mathbf{j}$ and $10 \mathrm{a}-\mathrm{j}$ prepared in similar manner from the corresponding free bases, are included in Table I.
β-(Dimethylamino)- α-(4-methylbenzoyl)-2-nitrostyrene (12a). Method M. A stirred mixture of trans- β-(dimethyl-amino)-2-nitrostyrene [$124 \mathrm{~g}, 0.65 \mathrm{~mol}$, prepared from 2-nitrotoluene (11a) and N, N-dimethylformamide diethyl acetal as described by Garcia and Fryer ${ }^{3}$], triethylamine ($65 \mathrm{~g}, 0.65 \mathrm{~mol}$), and toluene (800 mL) was treated dropwise with p-toluoyl chloride ($100 \mathrm{~g}, 0.65 \mathrm{~mol}$) at ambient temperature. The mixture was refluxed for 15 h , cooled, and treated with water to dissolve the precipitated salts. An orange solid remained and was collected by filtration. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a red oil, which crystallized on trituration with ether. The combined crops of solid were recrystallized from acetonitrile to afford $12 \mathrm{a}(61 \mathrm{~g}, 30 \%$). Properties of 12a, and of $\mathbf{1 2 b}-\mathbf{h}$ prepared in similar manner, are included in Table II. For 12e,g, the crude oils were chromotographed (12e: silica gel, EM reagents, 5% ethyl acetate in dichloromethane; 12 g : alumina, EM reagents, neutral, activity I, ethyl acetate). For 12d,f,h, the crude products were hydrolyzed (method B) to the corresponding ketones. For the synthesis of $12 \mathrm{f}, \mathrm{h}, 5$-chloro-2-nitrotoluene (11b) was prepared from 4-chloronitrobenzene as described by Traynelis and McSweeney. ${ }^{6}$ The crude 11b was partially purified by chromatography (alumina, ether) to afford a mixture of 11 b (60% by HPLC analysis) and 4 -chloronitrobenzene, which was used without further purification for condensation with N, N-dimethylformamide dimethyl acetal.

Pharmacological Methods. Procedural details for the prevention of tetrabenazine-induced ptosis, ${ }^{7}$ potentiation of 5-hydroxytryptophan-induced behavioral syndrome, ${ }^{7}$ inhibition of pentylenetetrazol-induced lethality, ${ }^{8}$ and prevention of amphetamine aggregation toxicity ${ }^{8}$ were previously reported.

Acknowledgment. The authors express their appreciation to Marc N. Agnew and Anastasia Rizwaniuk for spectral data and to Mark Szewczak, James Kiley, Daniel Salomone, and Susan C. Nicolacopulos for performing pharmacological assays. We also gratefully acknowledge June D. Baird-Strupczewski and Ann Van Dine for library research and Rose Marie Boysen for assistance in preparation of the manuscript.
(6) Traynelis, V. J.; McSweeney, J. V. J. Org. Chem. 1966, 31, 243.
(7) Ong, H. H.; Profitt, J. A.; Anderson, V. B.; Kruse, H.; Wilker, J. C.; Geyer III, H. M. J. Med. Chem. 1981, 24, 74.
(8) Ong, H. H.; Profitt, J. A.; Anderson, V. B,; Spaulding, T. C.; Wilker, J. C.; Geyer III, H. M.; Kruse, H. J. Med. Chem. 1980, 23, 494.

[^0]: ${ }^{\dagger}$ Chemical Research Department.
 ${ }^{\ddagger}$ Department of Pharmacology.
 ${ }^{8}$ Visiting Scientist, Hoechst AG, Frankfurt-Höchst, West Germany.
 \perp Present address: Wright Laboratory, Rutgers University, Piscataway, NJ 08854.

[^1]: (1) This paper has been presented in part; see "Abstracts of Papers", 181st National Meeting of the American Chemical Society, Atlanta, GA, Mar 20-Apr 3, 1981, American Chemical Society: Washington, DC, Abstr MEDI 8.
 (2) Geyer III, H. M.; Martin, L. L.; Crichlow, C. A.; Dekow, F. W.; Ellis, D. B.; Kruse, H.; Setescak, L. L.; Worm, M. J. Med. Chem., preceding paper in this issue.
 (3) Garcia, E. E.; Fryer, R. K. J. Heterocycl. Chem. 1974, 11, 219.

[^2]: (4) Bowie, J. H.; Janposri, S. Org. Mass Spectrom. 1975, 10, 1117.
 (5) Dyke, S. F.; Tiley, E. P., White, A. W. C.; Gale, D. P. Tetrahedron 1975, 31, 1219.

